Quasi-Concave Density Estimation
نویسندگان
چکیده
Maximum likelihood estimation of a log-concave probability density is formulated as a convex optimization problem and shown to have an equivalent dual formulation as a constrained maximum Shannon entropy problem. Closely related maximum Renyi entropy estimators that impose weaker concavity restrictions on the fitted density are also considered, notably a minimum Hellinger discrepancy estimator that constrains the reciprocal of the square-root of the density to be concave. A limiting form of these estimators constrains solutions to the class of quasi-concave densities.
منابع مشابه
A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator
In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...
متن کاملGlobal Rates of Convergence in Log-concave Density Estimation by Arlene
The estimation of a log-concave density on Rd represents a central problem in the area of nonparametric inference under shape constraints. In this paper, we study the performance of log-concave density estimators with respect to global loss functions, and adopt a minimax approach. We first show that no statistical procedure based on a sample of size n can estimate a log-concave density with res...
متن کاملA Level-set Hit-and-run Sampler for Quasi-Concave Distributions
We develop a new sampling strategy that uses the hit-and-run algorithm within level sets of a target density. Our method can be applied to any quasi-concave density, which covers a broad class of models. Standard sampling methods often perform poorly on densities that are high-dimensional or multi-modal. Our level set sampler performs well in high-dimensional settings, which we illustrate on a ...
متن کاملA Computational Approach to Log-Concave Density Estimation
Non-parametric density estimation with shape restrictions has witnessed a great deal of attention recently. We consider the maximumlikelihood problem of estimating a log-concave density from a given finite set of empirical data and present a computational approach to the resulting optimization problem. Our approach targets the ability to trade-off computational costs against estimation accuracy...
متن کاملLogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-Concave Density
In this document we introduce the R package LogConcDEAD (Log-concave density estimation in arbitrary dimensions). Its main function is to compute the nonparametric maximum likelihood estimator of a log-concave density. Functions for plotting, sampling from the density estimate and evaluating the density estimate are provided. All of the functions available in the package are illustrated using s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008